OpenTutor: Designing a Rapid-Authored Tutor that Learns as you Grade

Benjamin D. Nye!, Rushit Sanghrajka?, Vinit Bodhwani', Martin Acob’,
Daniel Budziwojski!, Kayla Carr!, Larry Kirschner!, William R. Swartout!
nstitute for Creative Technologies, University of Southern California
2School of Computing, University of Utah
nye@ict.usc.edu

Abstract

Despite strong evidence that dialog-based intelligent
tutoring systems (ITS) can increase learning gains,
few courses include these tutors. In this research, we
posit that existing dialog-based tutoring systems are not
widely used because they are too complex and unfamil-
iar for a typical teacher to adapt or augment. OpenTu-
tor is an open-source research project intended to scale
up dialog-based tutoring by enabling ordinary teachers
to rapidly author and improve dialog-based ITS, where
authoring is presented through familiar tasks such as as-
sessment item creation and grading. Formative usabil-
ity results from a set of five non-CS educators are pre-
sented, which indicate that the OpenTutor system was
relatively easy to use but that teachers would closely
consider the cost benefit for time vs. student outcomes.
Specifically, while OpenTutor grading was faster than
expected, teachers reported that they would only spend
any additional time (compared to a multiple choice) if
the content required deeper learning. To decrease time
to train answer classifiers, OpenTutor is investigating
ways to reduce cold-start problems for tutoring dialogs.

Dialog-based intelligent tutoring systems (ITS) have shown
strong learning gains across a variety of domains, on the or-
der of 0.40 to 1.50 (Kulik and Fletcher 2016; Nye, Graesser,
and Hu 2014). Unfortunately, despite over a decade of ev-
idence of effective dialog-based ITS, relatively few con-
tent modules include these tutors. The primary bottleneck
for dialog-based ITS has been content authoring: typically
computer-science experts or even Al experts must be tightly
involved with creating new tutoring activities.

In this research, we posit that existing dialog-based tutor-
ing systems are not widely used because creating or modify-
ing content for them is too complex and unfamiliar for a typ-
ical teacher. Specifically, in Nye et al. (2014) we noted that
most authoring tools include functionality to author multiple
different areas, such as the domain content, the pedagogy
and dialog strategies, and the user interface (UI). Based on
experience collaborating with non-technical authors on tu-
toring dialogs, our intuition was that such authors should be
able to create tutoring dialogs if they only need to author
and edit domain content rather than Ul or dialog models.
Unfortunately, natural language-based intelligent tutors are

Copyright © 2021by the authors. All rights reserved.

often initially inaccurate in their assessment of student an-
swers and require expert computing skills to optimize fea-
tures or improve accuracy. To address this issue, we investi-
gate an approach where teachers improve the quality of di-
alogs through a familiar task: grading students’ answers.

Background and Related Work

This project draws from two different areas of research and
development: ITS authoring tools and broader non-technical
authoring tools for interactive dialogs. ITS research on au-
thoring tools for tutoring dialogs remains relatively uncom-
mon, representing under 10% of tools in a recent systematic
review (Dermeval et al. 2018).

At least one effort, AutoTutor Lite, has been modestly
successful in that external research institutions have suc-
cessfully developed their own tutoring content (Wolfe et al.
2013) and it has been integrated into the GIFT open source
framework (Wang et al. 2020). AutoTutor Lite primarily en-
ables authoring dialog content (e.g., questions, responses,
feedback), and also configures technical parameters (e.g.,
feedback thresholds) and UI configuration such as associ-
ated media or multiple tutoring agents. It also offers the abil-
ity to develop full AutoTutor scripts (e.g., with production
rules) as an advanced feature. A related effort, the Rapid
Form-Based Authoring Tool for AutoTutor attempted a step-
by-step walk-through to simplify this process (Nye et al.
2014), but was ultimately not successful because it was hard
to revise dialog content and content revision is often more
time consuming than initial authoring.

In the commercial space, non-technical authors have de-
veloped open response interactions for education and for
game development. Game content tools have focused on
script writers as their authors, who adapt their skills to de-
veloping text scripts with markup (e.g., Twine, Inkle, Yarn-
spinner) or visual graphs such as Chatmapper (Neil 2018).
These primarily represent branching or looping interactions,
driven by multiple choice inputs or evaluating parameters
conditionally. As such, they train non-technical authors to
optionally add procedural programming syntax. A common
theme for these tools are that they add functionality to au-
thoring forms they already know (e.g., scenes, screenplay
scripts, graphs of cards).

In the education space, teachers do not author interac-
tive conversations. However, they do create item sequences

which sometimes have feedback and branching. Many learn-
ing management systems (LMS) implement open-response
systems which allow multiple attempts and feedback based
on which keywords or approximate matching. As a com-
plementary tool, most LMS support manual grading of free
text answers (e.g., Canvas Speedgrader, Blackboard rubrics),
with tabular rubrics to rapidly grade text input. Overall,
teachers author declarative information (e.g., content, label-
ing) rather than nested procedures and conditions, but these
LMS tools are still relevant to aspects of dialog authoring.

OpenTutor Design

The central design goal for OpenTutor is to provide a system
that teachers can quickly create and refine conversational
ITS dialogs, while still retaining the well-established learn-
ing gains of expectation-misconception conversational tutor-
ing (Graesser 2016; Nye, Graesser, and Hu 2014). OpenTu-
tor is built to develop dialogs in a four-step cycle:

1. Authoring: Teacher authors and revises an dialog with an
open-ended question and a set of expectations (concepts),
which each have a set of hints.

2. Tutoring Test-Sessions: A set of tutoring sessions are
completed to understand how users respond to the tutor.

3. Grading: Teachers grade these tutoring test-sessions, gen-
erating labels and which determine an official grade for
that session or confirm the grade automatically generated
by OpenTutor (which is visible when grading).

4. Machine Learning: The teacher pushes a Train button to
use machine learning to improve the dialog classifier, im-
proving tutoring quality and automatic grading.

By using this process, OpenTutor is distinct in three ways:

 Familiar Tasks: The OpenTutor authoring process seeks
to build Ul interfaces that make developing a dialog-based
ITS feel like tasks that teachers are already familiar with,
such as item authoring and grading.

* Online Learning: OpenTutor collects student answers as
data, so that human and machine intelligence can improve
the tutor based on actual student responses.

 Service-Oriented: The tutor has separate services the user
interface, dialog model, and dialog classifiers. This struc-
ture is to enable open source iteration and improvements.

To maintain familiarity, OpenTutor intentionally limits its
generalizability. In terms of the four-block model of ITS, au-
thoring in OpenTutor is tightly focused on the Domain Mod-
ule rather than the Pedagogy Module, Communication/Ul
Module, or a persistent Student Module. As compared to
prior tools such as AutoTutor Lite, OpenTutor authors do not
develop conditional evaluation or conversational logic. This
is because, in our experience, even trained non-technical
authors require substantial time to create and refine a high
quality dialog flow. So then, rather than teachers authoring
new conversation flows, we expect that programmers con-
tributing to the open source code will instead implement
and test dialog models. As alternate templates are developed,
these could be selected by authors to use instead.

Dialog Service

The dialog service (opentutor-dialog) provides an API for
tutoring dialog sessions and acts as the Pedagogy Module.
The dialog service starts a tutoring session, generates system
responses to user text-based answers, and reports back eval-
uations of the quality of the students’ session performance.
The user’s responses are recorded for each session, to enable
grading and improving the classifier.

OpenTutor’s current dialog flow is adapted from a spe-
cific AutoTutor expectation-misconception template, which
was used extensively in the PAL3 mobile learning coach
project (Swartout et al. 2016). OpenTutor poses an open-
ended question with about 1 to 6 expectations, which are
concepts that are represented by an ideal answer. As the stu-
dent answers, the full set of expectations are checked such
that the tutor will skip any which are scored highly by the
classifier. For an unmatched expectation, the tutor will pro-
vide a hint (leading question) intended to help the learner
state the concept. When the student answers a hint, the tutor
may either a) evaluate it as correct, give positive feedback,
and move to the next expectation; b) evaluate it as matching
a different uncovered expectation, give “good thought, but
there’s more to it” feedback, and ask another hint; or c) give
neutral or negative feedback based on the evaluation and ask
another hint. Since the tutor might accept answers that only
loosely match the ideal answer, the tutor states the ideal an-
swer when done giving hints for an expectation (i.e., student
covered it or ran out of hints).

The tutor focuses on expectations in the order that they
were authored, other than skipping expectations that have
already been covered by the user’s answers. By compari-
son, AutoTutor traditionally uses an algorithmic approach
to choose the next expectation to tutor. Our experience was
that instructors preferred a predictable order for tutoring, so
that they could assume one concept was known before tu-
toring the next one. Teachers’ preferred order was not based
on domain knowledge, but was instead based on pedagogi-
cal domain knowledge: in one problem they might want the
student to know the right answer first and then ask why, but
in another problem they might want the reverse order.

For scoring and UI visualization purposes, OpenTutor re-
turns the scores for each expectation and an overall dia-
log score based on their performance matching the expec-
tations. During the dialog, OpenTutor also uses scores from
two general-purpose classifiers currently based on regular
expressions. These classifiers detect potential non-answers,
such as metacognitive statements (“i don’t know”) and
swearing. How the tutor responds to these general classi-
fiers depends on the relevance of the student’s input to the
expectations. This means that an abusive off-topic statement
(“damn you”) will cause the tutor to react to profanity, but a
partially correct answer which includes a swear will receive
more ordinary positive or neutral feedback.

Classifier Service

The classifier service (opentutor-classifier) evaluates the
quality of a student’s input against a set of expectations. For
every user input, the classifier outputs a classification label

for relevant to every expectation (good, neutral, irrelevant)
and a match score from O (definitely irrelevant) to 1 (defi-
nitely good) based on the classifier confidence. Unlike many
tutoring dialog classifiers, OpenTutor is designed to train a
dedicated classifier model for every single expectation so
that each dialog can be rapidly optimized as new user an-
swers are logged. This approach embodies the concept first
explored in Nye et al. (2015), which demonstrated that for
certain content a supervised-learning classifier could reach
comparable accuracy to a hand-tuned classifier within under
30 labeled examples.

The current classifier is intended to provide a baseline that
can be iterated and improved upon as examples from real tu-
toring dialogs grow over time. Based on the usefulness of
support vector machines with small data (Nye, Hajeer, and
Cai 2015), SVM was chosen as the baseline model. The fea-
tures for each trained model depend on the data available
(e.g., regex patterns will only be used if available) and can
be configured, but the initial set of features are:

* Semantic Similarity (Ideal Answer): Calculates the cosine
similarity of the average Word2Vec vectors for the input
against the ideal answer (Mikolov et al. 2013).

* Semantic Similarity (Main Question): Calculates the sim-
ilarity of the input against the main question prompt (Sul-
tan, Salazar, and Sumner 2016). This feature can help a
model to adjust for the baseline semantic similarity from
answering a question with the question prompt.

* Optimal Word Alignment: A pairwise approach to seman-
tic similarity, which calculates an average Word2Vec sim-
ilarity for the best match (without replacement) of input
words to the ideal answer, based on Rus et al. (2012).

* Length Ratio: The ratio of the number of input words to
the number of ideal answer words (input / ideal). Initial
testing indicates that this feature may reduce performance
for small N due to unbalanced training sets (e.g., authors
testing many short-bad answers or long-good answers),
which implies the need to down-weight this feature.

* Negation Indicator: A boolean feature which indicates if
an odd number of negations was detected.

* Good Regex: If provided, a set of regular expressions will
be evaluated and output a score from O to 1 for the fraction
which matched the input. This feature evaluates patterns
present in good answers.

* Bad Regex: Using the same approach as Good Regex, a
set of regular expressions to help detect bad or irrelevant
answers can be evaluated.

The quality of the classifier is still under evaluation.
Cross-validation metrics are built-in to the code base to
assist with evaluating the benefits of additional labeled
data. However, the quality of the current classifier appears
to vary substantially depending on dialog content (e.g.,
accuracies ranging between 40%-100% on leave-one-out
cross-validation testing). As with AutoTutor, the addition of
expert-authored regular expressions substantially improves
accuracy (e.g., in many cases from below 70% to over
80%). However, since authoring regex patterns contradicts

the OpenTutor’s core mission of “no technical skills re-
quired,” this is only relevant to importing pre-existing di-
alogs where expressions already exist. This does imply that
feature extraction which could identify these patterns could
boost accuracy, which was applied in earlier work to detect
ordered n-grams in earlier related work (Nye, Hajeer, and
Cai 2015). However, selection of features must be balanced
against usability: the training speed is currently fairly fast
(e.g., < 10s) but this is likely to decrease with larger data or
more computationally-expensive features.

Every dialog can store a trained machine learning model
and feature set configuration for each expectation. If a dialog
is not known in the classifier, the dialog information (e.g.,
expectation ideal answers) can be added to the classifier re-
quests and a default classifier will be used. This classifier is
trained on all known dialog data, which means that it is only
able to estimate weights and decision thresholds based on
typical similarity patterns between answers. As a result, the
default classifier will be suboptimal and only appropriate for
gathering initial data to train dialog-specific classifiers.

Tutoring User Interface

While the dialog model and classifier can be used as stan-
dalone services for other systems, OpenTutor also has its
own built-in Tutoring UI that is immediately accessible to
authors developing or sharing dialog lessons. As shown in
Figure 1, the interface contains a chat message area that
records the dialog between the tutor and student, a text entry
frame, and a space for media (e.g., an image) above the chat.
The specific dialog in the screenshots is an example used for
screenshots in the step-by-step tutorial for instructors as they
make their own dialog. During formative testing (described
later), instructors could optionally access and execute this
example, but none of them did so.

Inside the chat, each message from the tutor has an asso-
ciated speech act icon (e.g., positive feedback, hint, asser-
tion) and on the left hand side of the chat transcript. User
inputs are on the right hand side. Between the media area
and the chat, there are a set of circles which represent each
expectation. As a user’s answers match expectations, these
circular icons fill to show OpenTutor’s current score for each
expectation. Additionally, as the tutor starts providing hints
or support related to an expectation, that expectation’s icon
is designated with additional graphics (filling in the dot for
the circle). to help learners understand the purpose of that
response. At the end of the dialog, the full text of each ex-
pectation is shown in a summary panel, along with the final
score level for each expectation (as shown in Figure 2).

Authoring and Grading Ul

For OpenTutor to be useful, it must be easily authorable and
able to improve based on user answers. To make the tool
more accessible to teachers, the Authoring UI design con-
sidered comparisons from content management system tools
(e.g., LMS, survey editors) and grading tools. While the Au-
thoring UI will display on a mobile device (and screenshots
shown are cropped to these dimensions), it is not optimized
for editing on small mobile devices and is intended to be
used with laptops or desktops.

=,
%% OpenTutor

4
o O O

S S Do v
authoring, example
answers, and grading
those answers to improve
itself.

What does OpenTutor
require to improve itself?

Chat with OpenTutor

Figure 1: Default Tutoring Ul

When an author logs into the system, they first see a Les-
son List page where they can review the lessons they own
and also view any lessons made public to them. When they
create or edit a lesson, they see the Lesson Editor where they
immediately see how to name the lesson, write an optional
introduction statement, and author the main question. After
writing the question, they add expectations. For each expec-
tation they can author a series of hints, as shown in Figure 3.
When done editing the expectations and (optionally) a clos-
ing statement, the bottom panel of the lesson has options to
Save, Launch (test in the default UI), and Train (update the
classifiers based on graded session answers).

After completing a lesson, authors are instructed to com-
plete it four times, acting out different learner archetypes
with the given instructions:

1. Expert Learner: Try to answer with the full answer that
covers all expectations. This should be an answer that the
tutor accepts fully, gives positive feedback, and ends the
dialog.

2. Good Learner: Try to answer each expectation well, one
at a time. If the tutor doesn’t understand your good answer
that the tutor should accept for that expectation, keep try-
ing good answers to that expectation until it accepts them
or it gives you the answer. Do this for each expectation.

3. Inconsistent Learner: Try to answer irregularly at vary-
ing quality, or introduce specific misconceptions that you
know are a problem and students might say.

4. Struggling Learner: Try to answer incorrectly consis-
tently, but still relevant to the overall topic. If you know
any key misconceptions that students tend to say, state
them here.

Lesson Summary

That's a wrap! Let's see how you did on this lesson!

It needs initial authoring of expectations and
hints

answers for what people might answer

@ OpenTutor needs testing to collect example

Grading answers tells the tutor which are
correct, making it smarter.

CLOSE

Figure 2: Tutoring Summary Panel

= Edit Lesson

Expectation

Expectation 1

You need to author the initial content

Hint

Hint 1
What do you need to make before you can test a dialog?

Hint 2
[The tutor has to know want it to teach. What do you need to do for i

Hint 3
How does the tutor get the expectation and hints that it uses?

Figure 3: Lesson Editor - Expectations

Authors are then directed to visit the Grading List page,
where the author rates the accuracy of the classifier in iden-
tifying good and bad answers. It is similar to the Lesson List
except that it shows the list of tutoring sessions completed.
By default, only ungraded sessions are shown, but all ses-
sions can be displayed using a toggle. When a session is
opened to grade (Figure 4), the user’s answers to that ses-
sion are shown in a table where each row is a user input and
each column is an expectation that can be graded as good,
bad, neutral, or left ungraded.

While all answers can be graded against all expectations,
the session is counted as graded after each answer is graded
against at least one expectation. There is a button to train a
custom model for a lesson based on the grading, which is at
the bottom of the lesson-editing screen but is disabled until
each expectation has 5 answers graded Good and 5 graded
Bad. This button starts online training and deploys a new
model, which can be immediately tested when training com-
pletes successfully. Authors also see the cross-validation ac-
curacy for the new model in the Lesson Editor UL

Formative Usability Testing

A prototype of the OpenTutor authoring process was tested
by five educators from domains other than computer sci-
ence (e.g., mathematics, psychology, education). These ed-
ucators were connected to universities (e.g., professors, in-
structors, graduate students with prior teaching experience)

= Grade Session © MYTESTLOGIN

oring, collect answers by testing , ~ Classifier Grade: Good
Grade: - Grade: - Grade: -

DONE

Figure 4: Grading Interface

so they represent a relatively advanced group, in that all
testers were highly experienced in traditional online course-
ware. Testers unfamiliar with the general concepts of an
expectation-misconception dialog were given an introduc-
tion. Usability testing followed the process described above:
log in, create a new lesson, complete a set of user sessions,
grade the sessions, and initiate re-training the model. A 9-
page tutorial was provided, with 12 large screenshots to
demonstrate every major step. Authors had not previously
used the tool. This first-dialog testing took between 50 and
80 minutes, including all instructions, authoring, grading,
ratings, and discussion. At the time the usability testing was
performed, the classifier training pipeline was still being de-
bugged so authors did not retry their dialogs after training.

The instructors were encouraged to talk aloud and also
rated the system on two items adapted from the Technology
Acceptance Model (Venkatesh, Thong, and Xu 2016): ease
of use and expected benefit. All ratings were on a six-point
scale from 1=Definitely Not to 6=Definitely Agree (where
3=Slightly Disagree and 3=Slightly Agree). The ratings are
shown in Table 1. Overall, the ratings were positive but not
consistently strong: while OpenTutor was rated a good idea
(concept), ratings of ease of use and expected benefit to stu-
dents were both about a half-point lower. Of these, ease-of-
use issues showed relatively actionable solutions while in-
creasing benefit to students was more complex.

Ease-of-use ratings for individual editing panels were
high, and primary concerns fell into three categories: tran-
sitions between different parts of the system (user experi-
ence flow) and better explanations for authored fields/values.
The most common verbal comment (3 of 5) was that it was
unclear how to launch a lesson to test it (particularly from
the Lesson Editor). An equally common request was that
elements of the Lesson Editor (“Introduction”, “Hint”) or
Grader (“Good”, “Bad”) had a key or tooltips to help a new
user know what to expect when they set those values, such
as if an Introduction would be in chat from the agent ver-
sus shown in a panel before starting the dialog. Related to
this, two users had trouble designing OpenTutor hints and
instead posed yes-or-no hint questions. On the positive side,
most authors praised the “clean dialog system” with the in-
terfaces being easy to navigate and operate (e.g., “Working
with the system and putting things together was intuitive”).

The primary features requested by authors were greater
multimedia/Ul control and greater granularity in grading
student responses. Multiple participants requested the abil-
ity to configure the UI shown to the student, such as upload-
ing images or linking to segments of video clips. Some also
wanted the ability to change the media shown based on di-
alog events (e.g., change an image after feedback). When

[Ttem | Mean [StdDev |

Overall, how good of an idea is Open- | 5.2 0.5
Tutor as a tool to help learners?
How much do you think OpenTutor | 4.6 1.1
could be used to benefit your instruc-
tion and outcomes for students you
are teaching?

Overall, was the system easy to use? 4.6 0.9
- Ease of Use: Home Screen/Listings 5 1.2
- Ease of Use: Lesson Editor 5 0.7
- Ease of Use: Grading Panel 5 1

Table 1: Non-CS Educator Ratings

grading student responses, authors found the current four
options too limited (Good, Neutral, Bad, Ungraded). Re-
quested additions took different forms, from a 5-point scale,
to replacing Neutral with two tags for Partial or Mixed, or
to split out a Does Not Address/Not Relevant label to use
rather than just Bad.

The comments associated with expected benefit to stu-
dents were more complex. The primary tradeoff was how
often teachers would use this in a class versus items that
were equivalently fast to author (e.g., multiple choice with
feedback) but did not require grading to tune them. While
one teacher indicated they would use this for a wide set
of content, two others noted that they would only use this
for deeper or more challenging content. However, for some
types of complex content they were concerned if the Al
would adequately understand student answers. As such, fur-
ther research should survey teachers’ preferred use cases for
dialog-based tutoring in a larger course structure. Combined
with research on where tutoring dialogs significantly outper-
form traditional methods, this could help develop guidelines
for teachers to get the most value out of tutoring dialogs.

Conclusions

While OpenTutor is an actively-developing prototype, its
design explores approaches that future authoring tools and
dialog-based tutors. First, the high user acceptance for the
authoring and grading interfaces indicate that teachers com-
fortable developing online courses can rapidly develop a
first-run interactive tutoring dialog if provided UI designs
that resemble more familiar tools provided by LMS and
CMS frameworks. Second, the grading process was more
efficient than expected, with authors typically able to grade
sessions in under two minutes. As a result, the initial usabil-
ity results were promising and may be relevant for future
Al-based tools for instructors, where their grading activi-
ties might be used to train tools that help them with future
class cohorts or activities. With that said, the sample size was
small and not representative of typical instructors, so further
research is needed to test feasibility for broader populations.

Additionally, from a comparative-advantage standpoint,
instructors indicated that any increase in item authoring time
(compared to multiple choice) would need to produce sub-
stantial student benefits, which could limit use to a subset
of course lessons. We believe this can be addressed by con-
sidering two complementary directions: improved machine

learning (decrease time costs) and multi-activity support (in-
crease benefits). The OpenTutor approach should also be
compared against established tools such as AutoTutor to bet-
ter quantify efficiency improvements versus limitations that
might reduce instructors expected benefit.

Improved machine learning for the dialog classifier is im-
portant, since every labeled example costs additional author
time. The long-term goal for this classifier is to use every
optimization possible to address the cold-start problem for
new dialogs (e.g., through transfer learning, active learning,
etc.). A core research problem for tutoring classifiers are that
the correctness of an answer is often not entirely semantic,
but depends on the context. For example, if an electronic
circuit is shown for diode current flow, good answers may
include: “in forward bias”, “from left to right”, “from anode
to cathode”, or even “in the direction of the arrow” (since a
diode symbol looks like an arrow). An unsupervised general
model such as Word2Vec is inherently incapable of directly
understanding that these answers all demonstrate the same
underlying concept (diode forward bias behavior).

As such, ongoing work is examining techniques to cluster
user answers to find distinct patterns that imply semantically
distinct ways to explain a concept. This direction is promis-
ing, because certain types of clustering are effective with
small numbers of samples (e.g., hierarchical clustering, k-
nearest-neighbors) and because research on human graders
finds that the speed to grade answers can be more than dou-
bled by using clustering to group answer patterns for short
answers (Brooks et al. 2014). Extracting patterns from clus-
ters should theoretically be more efficient than the n-gram
keyword extraction techniques used by Nye et al. (Nye, Ha-
jeer, and Cai 2015) which were determined from brute force
(combinatorial) patterns based on exact keyword matching.

As a complementary approach, the benefits of OpenTutor
could be enhanced by supporting alternate content modes,
starting with a simple self-reflection survey or dialog. In this
model, teachers could rapidly develop multi-part open ended
questions (without assessment), which can then also convert
into graded short answers or tutoring dialogs after sufficient
sessions are graded. While this concept is still being ex-
plored, the ability to reuse the inferences from the lessons
and classifier may offer a more broader feature set for teach-
ers. As such, further work is needed to explore how dialog-
based ITS fit into the larger content ecosystem for a course.

Acknowledgments

This research work was sponsored by Military Operational
Medicine Research Program (MOMRP) conducted under
the USC ICT University Affiliated Research Center (UARC;
Army W911NF-14D-0005) and includes contributions from
NSF REU student researchers (NSF IIS 1852583). However,
all statements in this publication are the work of the authors
alone and do not necessarily reflect the views of the spon-
sors, and no official endorsement should be inferred.

References

Brooks, M.; Basu, S.; Jacobs, C.; and Vanderwende, L. 2014.
Divide and correct: using clusters to grade short answers at

scale. In Proceedings of the first ACM conference on Learn-
ing @ scale conference, 89-98.

Dermeval, D.; Paiva, R.; Bittencourt, I. I.; Vassileva, J.; and
Borges, D. 2018. Authoring tools for designing intelligent tu-
toring systems: a systematic review of the literature. Interna-
tional Journal of Artificial Intelligence in Education 28(3):336—
384.

Graesser, A. C. 2016. Conversations with autotutor help stu-
dents learn. International Journal of Artificial Intelligence in
Education 26(1):124-132.

Kulik, J. A., and Fletcher, J. 2016. Effectiveness of intelligent
tutoring systems: a meta-analytic review. Review of educational
research 86(1):42-78.

Mikolov, T.; Sutskever, 1.; Chen, K.; Corrado, G. S.; and Dean,
J. 2013. Distributed representations of words and phrases and
their compositionality. In Advances in neural information pro-
cessing systems, 3111-3119.

Neil, K. 2018. Authoring interactive narrative in twine 2 vs
ink vs yarn. https://medium.com/haikus_by_KN/authoring-
interactive-narrative-in-twine-2-vs-ink-a-quick-and-dirty-
comparison-using-examples-e695eb4dfc3e.

Nye, B. D.; Yang, M.; Hays, P.; Silva-Lugo, R.; Cai, Z.; Rah-
man, M. F; Hu, X.; and Graesser, A. C. 2014. Rapid, form-
based authoring of natural language tutoring trialogs. In GIFT-
Sym2, 175-185.

Nye, B. D.; Graesser, A. C.; and Hu, X. 2014. Autotutor
and family: A review of 17 years of natural language tutor-

ing. International Journal of Artificial Intelligence in Educa-
tion 24(4):427-4609.

Nye, B. D.; Hajeer, M. H.; and Cai, Z. 2015. Improving classi-
fication of natural language answers to its questions with item-
specific supervised learning. In FLAIRS Conference, 436—468.

Rus, V., and Lintean, M. 2012. An optimal assessment of nat-
ural language student input using word-to-word similarity met-
rics. In International Conference on Intelligent Tutoring Sys-
tems, 675—676. Springer.

Sultan, M. A.; Salazar, C.; and Sumner, T. 2016. Fast and
easy short answer grading with high accuracy. In Proceedings
of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, 1070-1075.

Swartout, W.; Nye, B. D.; Hartholt, A.; Reilly, A.; Graesser,
A. C.; VanLehn, K.; Wetzel, J.; Liewer, M.; Morbini, F.; Mor-
gan, B.; et al. 2016. Designing a personal assistant for life-long
learning (PAL3). In FLAIRS 2016, 491-496. AAAI Press.

Venkatesh, V.; Thong, J. Y.; and Xu, X. 2016. Unified the-
ory of acceptance and use of technology: A synthesis and the
road ahead. Journal of the association for Information Systems
17(5):328-376.

Wang, L.; Shubeck, K.; Shi, G.; Zhang, L.; and Hu, X. 2020.
Cbits authoring tool in gift. In Generalized Intelligent Frame-
work for Tutoring (GIFT) Users Symposium (GIFTSymS), 69—
77. US Army.

Wolfe, C. R.; Widmer, C. L.; Reyna, V. F.; Hu, X.; Cedillos,
E. M.; Fisher, C. R.; Brust-Renck, P. G.; Williams, T. C.; Van-
nucchi, I. D.; and Weil, A. M. 2013. The development and anal-
ysis of tutorial dialogues in autotutor lite. Behavior research
methods 45(3):623-636.

