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Abstract

Previous work on story planning has lacked a knowledge
representation for characters that attempt actions that fail
because of the characters’ misconceptions about the world
state. This work describes HEADSPACE, a state-space heuris-
tic search planning system that generates stories that track
and manipulate characters’ beliefs about the story world. The
planner produces story plans with actions that are attempted
but fail. We show an example story plan that contains failed-
action content that cannot be generated by typical planning-
based approaches to story creation, and we provide an analyt-
ical evaluation that characterizes our planner’s increased ex-
pressive range relative to other narrative planners addressing
character belief and/or failed action execution.

Introduction

In stories, characters commonly attempt to perform actions
that fail (Lenhart et al. 2008). For example, when Thanos the
Mad Titan attempts to remove half of the life in the universe
by snapping his fingers in Avengers: Endgame (Russo, A.
and Russo, J. 2019), he’s surprised when his finger snap has
no effect. He realizes too late that the Infinity Stones, which
he had assumed were in place along the back of the gauntlet
he’s wearing, were missing, removing the gauntlet’s powers.

When authors include actions that fail in their stories, it
is not simply due to emergent properties of complex story
worlds. Quite often, characters’ action failures are designed
intentionally by authors for narrative effect. They build ten-
sion, prolong efforts around goal achievement, or highlight
the disparities between the knowledge states of a story’s
characters. These functions played by action failure are cen-
tral to many plot-level narrative constructs. The work we de-
scribe here seeks to outline a principled means to generate
story lines with failed actions and advance a broader goal of
automatically creating more expressive, natural, and com-
pelling narratives.

One of the strengths of recent planning-based narrative
generation methods (e.g. (Young et al. 2013; Porteous and
Cavazza 2009; Coman and Munoz-Avila 2012; Ware et al.
2014; Bahamoén, Barot, and Young 2015; Teutenberg and
Porteous 2013)) is that they retain many of the benefits
of classical planning while also increasing the expressive
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range (Smith and Whitehead 2010) of narrative generators.
One limitation of planning approaches for story line cre-
ation arises from their inability to generate plans contain-
ing actions that fail. In this paper, we extend previous pre-
liminary work (Thorne and Young 2017) to provide the
design of an algorithm for story generation that explicitly
plans for character actions that fail. The algorithm uses a
knowledge representation that provides context for this fail-
ure based on the limitations of characters’ beliefs about the
story world around them (e.g., Thanos’ false belief that the
all the Infinity Stones were in place in his gauntlet and he
had the resulting power to change the universe). The algo-
rithm, called HEADSPACE, produces story structure that has
many of the advantageous properties found in other plan-
based approaches and is more parsimonious than previous
approaches to story generation that also address character
belief dynamics.

As we describe below, the HEADSPACE narrative plan-
ning algorithm can generate stories where a) agents may op-
erate under mistaken beliefs that lead them to attempt ac-
tions which fail, and these attempted actions do not produce
the expected effects; b) agents performing actions observe
the success or failure of their actions’ execution; c) agents
revise their belief states in response to an observed failure as
well as both passive and active sensing actions.

Related Work

Narrative planning research has incorporated additional con-
structs into the planning process to expand the expressive
range of plan representations to support aspects of charac-
ter decision-making. [IPOCL (Riedl and Young 2010) adds
intentional structures to plan requirements that ensure ac-
tions taken by characters appear to be coherent to read-
ers. Extending IPOCL, Ware and Young’s (Ware and Young
2011) CPOCL adds a representation of conflict in story plans
where one character might take actions that interfere with
or thwart the execution of actions taken by other charac-
ters. In the Mask planning system, Bahamon and his collab-
orators (Bahamon, Barot, and Young 2015; Bahamén and
Young 2017) incorporate a model of character personality
that is used to drive character choice for action that expresses
character personality traits.

These extensions to the classical planning approach have
assumed two things. First, they make no distinction between



the knowledge held by characters and that held by the plan-
ning system. Second, the algorithms are based on a long
tradition of planning research outside of narrative planning
where the soundness of planning algorithms is a require-
ment. This is a highly desirable property when producing
plans for robot execution, for example, running robots exe-
cuting tasks on a factory floor. The focus of classical plan-
ning approaches on the representation of physical proper-
ties of the world and on requirements that any plan pro-
duced by a planner must be sound limits the production of
plans to drive characters bumbling through a story world.
Our work aims to distinguish between soundness on a ma-
terial level (which classical planning focuses on) and on an
epistemic level (where agents performing the actions believe
all of the preconditions of those actions obtain at the point
where the agent will execute them). As we describe below,
HEADSPACE-produced plans have steps having epistemi-
cally satisfied preconditions but not necessarily materially
satisfied ones. Plans consisting of failed actions still have
soundness properties relative to character beliefs, because
characters must believe all preconditions of an action obtain
before attempting it.

The initial work addressing disparities of knowledge be-
tween agents in a planning context was done by Pollack in
her work on the Spirit plan inference system (Pollack 1986).
This work in turn motivated Geib’s (Geib 1994) approach to
formalizing intention in a plan generation system. As part
of the resulting ItPlanS planner, Geib and Webber (Geib and
Webber 1993) draw the distinction between an action’s pre-
conditions and other conditions that are necessary for an
action’s execution (but are not established by the planner
should they not hold). Geib also considers the importance of
reasoning about action failure in the context of plan gener-
ation. Cavazza and his collaborators (Cavazza, Charles, and
Mead 2003) describe an approach to the generation of story
sequences where characters are unaware of some aspects of
the world around them, including the harmful consequences
of some of their own actions. Shirvani and their collabora-
tors (Shirvani, Ware, and Farrell 2017) propose an extension
to state space planning models that represents character be-
liefs as well. Their approach also tracks character beliefs,
only with deeper layers of nested beliefs. However, their ap-
proach doesn’t leverage these beliefs, as HEADSPACE does,
to extend the space of narrative plans that can be produced to
include ones where characters perform actions that can fail
due to their flawed beliefs about the world. Paralleling ear-
lier work by Haslum (Haslum 2012) on the pre-compilation
of intentional narrative planning into more efficient conven-
tional planning representations, recent work by Christensen
and their collaborators (Christensen, Nelson, and Cardona-
Rivera 2020) developed processes that pre-compile belief-
based planning models into similarly efficient representa-
tions.

The IMPRACTical planner (Teutenberg and Porteous
2013) produces story plans guided by a heuristic that incor-
porates individual characters’ intentions. Furthermore, ex-
tension to this work (Teutenberg and Porteous 2015) allows
for separate belief models for each agent. Using a combi-
nation of observation axioms and operator annotations, their

system can create disparities between the belief models of
the agents and the world state. Plan generation is directed
based on actions supported by beliefs of the enacting agent.
This enables deceptive social action involving manipulation
of the belief state of one agent by actions of another. Subse-
quently the manipulated agent can be induced to act against
its own interests because of the incorrect beliefs it holds.

Representation

HEADSPACE uses a PDDL-like (McDermott et al. 1998)
syntax for representing schematized action types in which
actions are characterized in terms of preconditions — con-
ditions that must obtain in the world state in order for the
action to execute — and effects — conditions in the world
state that change upon the action’s successful execution.
For efficiency, we follow the approach of Nebel and Hoff-
mann (2001) and others and pre-compile schematized op-
erators for a given domain into a set of ground operators
representing every valid ground instantiation of a domain’s
act-types. We further differentiate the knowledge represen-
tation by describing both preconditions and effects related to
the physical world and others that obtain in the beliefs of the
character performing the action. In HEADSPACE, a world
frame captures the sets of ground literals that can be used to
characterize the world, as well as the set of symbols used to
name the characters capable of taking action in the world.

In the HEADSPACE knowledge representation, the set O
contains all the object constants for a given domain. There
is a distinguished type of object symbols called character,
character symbols are contained in a set C' where C' C O.
Characters are distinguished from other objects by their abil-
ity to take action.

In HEADSPACE, a world frame captures the sets of ground
literals that can be used to characterize the world, as well as
the set of symbols used to name the characters capable of
taking action in the world.

Definition (World Frame). A world frame is a tuple W =
(GL,C) where GL is a set of positive ground literals and
C'is a set of constants, each denoting a unique character. C
contains one distinguished character name E, which desig-
nates the environment.

A belief state characterizes the ground literals that a char-
acter believes to be true and false, as well as those whose
truth values that are unknown to the character.

Definition (Belief State). Given a world frame W =
(GL,C), a belief state for some character ¢ € C' is a tuple
BS. = (Bf,B.,U,.) such that B}, B, and U, together
form a partition of GL, where B} designates all the ground
literals that c believes to be true, B, includes all the ground
literals that c believes to be false and U, designates all the
ground literals that c does not believe to be true and does
not believe to be false.

A world state assigns truth values to every ground literal

in a world frame, and also provides belief state specifications
for every character in a world frame.

Definition (World State). Given a world frame
W = (GL,C), a world state is a tuple w =



(Tw, Fy,BSe,,...BS.,) where T, and F, together
form a partition of GL, where T,, designates all the ground
literals that are true at w, Fy, includes all the ground
literals that are false at w and each BS,, designates the
belief state for character ¢; at w, where 1 < i < |C|.

Definition (Epistemic Goal Specification). Given a world
frame W = (GL,C), an epistemic goal specification for
some character ¢ € C'is a tuple £€G. = (BX,B;,U.)
such that B}, B, and U, contain only elements from GL
and have no common elements, where Bt designates all the
ground literals that c should believe to be true, B_ includes
all the ground literals that c should believe to be false and U,
designates all the ground literals that c should not believe to
be true and should not believe to be false.

Definition (Master Goal Specification). Given a world
frame W = (GL,C), a master goal specification is a tu-
ple MGS = (T, Fy,EGe,, ...EG., ) where each element
of the tuple is a set that contains only elements from GL,
T, N F, = 0, where Ty, designates all the ground liter-
als that must be true at some goal state, F, includes all the
ground literals that must be false at some goal state and each
EG., designates the epistemic goal specification that must
hold for character c; at the goal state, where 1 < i < |C|.

A ground operator is a complete specification of an ac-
tion in terms of the character performing the action, the con-
ditions that must be true or false in the world in order for
the action to execute, what the character performing the ac-
tion must believe about the world in order for her to take
the action, and how the action, once successfully executed,
changes the world and the beliefs of the performing charac-
ter.

Definition (Ground Operator). A ground operator GOP is
a tuple GOP = (c,PRE-T,PRE-F,PRE-B™ PRE-B~ ,PRE-
U,EFF-T,EFF-F,EFF- BT EFF- B~ EFF-U) such that

e PRE-T,PRE-F,PRE-B™T ,PRE-B~ ,PRE-U,EFF-T,EFF-
F,
EFF-B* EFF-B~ ,EFF-U C GL

e PRE-T N PRE-F=PRE-B1 N PRE-B~ N PRE-U=EFF-
TN EFF-F N EFF-BT N EFF-B~ N EFr-U= ()

e cec(C.

Informally, ¢ designates the character initiating (or per-
forming) the ground operator, PRE-T and PRE-F indicate
the conditions in the world that must be true or false in order
for the operator to execute, PRE-B' PRE-B~ and PRE-U
indicate the conditions that ¢ must believe to be true, false
or unknown in the world in order for ¢ to consider the op-
erator executable; EFF-T, EFF-F indicate the conditions inn
the world that become true or false upon the action’s suc-
cessful exection, and EFF-B+, EFF-B~, EFF-U indicate the
conditions that ¢ comes to believe are true, false or unknown
in the world state resulting from the operator’s successful
execution.

* c designates the character initiating (or performing) the
ground operator.

* PRE-T indicates the conditions in the world that must be
true in order for the operator to execute.

* PRE-F indicates the conditions in the world that must be
false in order for the operator to execute.

e PRE-B™ indicates the conditions that ¢ must believe to
be true in the world in order for c to consider the operator
executable.

* PRE-B~ indicates the conditions that ¢ must believe to
be false in the world in order for c to consider the operator
executable

* PRE-U indicates the conditions that ¢ must neither be-
lieve to be true or false in the world in order for ¢ to
consider the operator executable

e EFF-T indicates the conditions that become true in the
world state resulting from the operator’s successful exe-
cution

* EFF-F indicates the conditions that become false in the
world state resulting from the operator’s successful exe-
cution

» EFF-B7 indicates the conditions that c believes become
true in the world state resulting from the operator’s suc-
cessful execution

* EFF- B~ indicates the conditions that ¢ believes become
false in the world state resulting from the operator’s suc-
cessful execution

* EFF-U indicates the conditions that ¢ neither believes are
true nor are false in the world state resulting from the
operator’s successful execution

We call the preconditions and effects that refer to lit-
erals that are true or false in the physical world material
and those that specify beliefs of the character epistemic. In
HEADSPACE, beliefs are always held by a particular agent,
and only about ground literals and their truth values. There
are no nested beliefs, no existential or universal quantifica-
tion over beliefs and no implications defined over beliefs.

Constructing Story Plans from Planning
Problem Specifications

Typical planning representations include a set of schema-
tized action operators characterizing the classes of actions
that can occur in a domain. In our approach, we take a set
of such operators and a set of object constants and gener-
ate a world frame and a set of ground operators from them.
This pre-processing is comparable to typical grounding pro-
cesses used by forward-state planning algorithms (e.g., those
of Nebel and Hoffmann (Nebel and Hoffmann 2001)).

A planning problem, then, is a tuple PP =
(W, wp, MGS, GO) including a world frame W describing
all possible ground literals and characters in a domain, an
initial world state wq characterizing the truth values of all
literals and the beliefs of all characters, a goal specification
MGS giving a partial description of a goal world and a set
of ground operators GO available for characters to execute
in the domain.

An action, represented by a ground operator, is executable
in some state w just when all its material preconditions ob-
tain in w. We say that a ground operator is unexecutable in
state w just when it is not executable in w. An action is ap-
parently executable in some state w for a character c just



Algorithm 1: HEADSPACE algorithm. For Planning Problem
PP = (WF,wy, G,GO) and plan heuristic ranking func-
tion H, call HEADSPACE(W F, H, {({_L,wq)), G, GO).

HS((GL, C)),H,Plans, MGS,GO)

2: Using heuristic ranking function H, rank all plans in
Plans. Let P be the highest ranked plan in Plans.
if P is a solution then

4:  Return P
else
6:  Letw be wy, the world state in kth (final) tuple in the
plan P
Let AE=0)

8: forallce Cdo
Let AE = AFE U all apparently executable actions

for c in wy,
10:  end for
for alla € AE do
12: if a is executable by c in wy, then

Let w’ be the world state resulting from ¢ exe-
cuting action a in world state w

14: else
Let w’ be the world state resulting from c at-
tempting action a in world state w.

16: end if
Append (a,w’) to the end of P
18: Let Plans = Plans U P
end for

20:  Call HEADSPACE(W F, H, Plans, G, GO)
end if

when c’s belief state in w supports all of the action’s epis-
temic preconditions in w. We say that a ground operator is
apparently unexecutable for c in state w just when it is not
apparently executable for ¢ in w.

A plan for some planning problem PP =
(W, wo, MGS,GO) is an ordered sequence of tuples
where, for each tuple (a;,w;), a; indicates the ith action
in the plan (attempted in world state w;_;) and w; the
state that obtains after a; was attempted. A solution for
some planning problem PP = (WF, wg, MGS,GO) is
a plan P for PP where, for every tuple (a;, w;) in P, a;
is apparently executable in w;_1, w; is the world resulting
from attempting a; in w;_1, and for a plan of length k, wy,
supports MGS.

Plan Generation

The HEADSPACE algorithm, shown in Algorithm 1, uses
forward-directed state-space search. Search starts at a given
initial state, and the transition from a given state to its suc-
cessor states is made through the ground operators that are
apparently executable by the characters in the given state.
Given a world frame W = (GL,C) and a world state
w; = (T, Fu,, BSe,, ...BS., ), the planner generates suc-
cessor states for w; as follows. First, the planner generates
the set of all apparently executable ground operators at w;,
designated AE,,,, by taking the union of all actions that ap-

pear executable in w; to each character ¢, 1 < k < |C.

For every executable action in AE,,,, the algorithm finds
the resulting world state from executing the action at w;.
The resultant world state is computed by applying all the ef-
fects of the action. Both material effects (i.e. EFF-T,EFF-F)
as well as the epistemic effects (i.e. EFF- BT ,EFF-B~ EFF-
U), with the latter applied to the belief state of the character
performing the action.

For two adjacent tuples (a;,w;) and (a;11,w;41) in a
plan P, when a; 1 is an executable action, we say that a; 1
was executed by c¢; 41 in w;, resulting in w4 ;. For two adja-
cent tuples (a;, w;) and (a;4+1,w;+1) in a plan P, when a; 41
is an unexecutable action, we say that a; 1 was attempted
by c;11 in w;, resulting in w;4 1.

When unexecutable actions are attempted by a character,
the actions fail. We call the manner in which the planner
manages this kind of action failure the planner’s failure pol-
icy. In the current work, we define a relatively straightfor-
ward failure policy. First, with regard to action occurrence,
none of the attempted action’s effects obtain and no material
conditions in the world change. In effect, the action does not
execute. Second, with respect to failure detection, the char-
acter executing the failed action immediately detects that it
fails, but no other character detects the failure. Third, with
respect to local attribution, the character executing the failed
action assumes that the failure was due neither to execution
error nor to an error in the definition of the ground operator.
Rather, the character assumes that the failure was due to one
or more of the action’s epistemic preconditions not holding
in the action’s world state.

Formally, an epistemic update occurs when an action is at-
tempted but fails. The epistemic update creates a new world
state where the material state is unchanged, but the belief
states are modified: the character that attempted the action
is now uncertain about the preconditions of the attempted
action holding, i.e. literals in PRE-B* ,PRE-B~ ,PRE-U of
the attempted action are all added to the U, belief state of
the character. The character does not attribute the cause of
failure to the world, but rather, to their own beliefs being
inconsistent with the true state of the world. The character
then becomes certain about the conditions that can be ver-
ified by passive sensing (for example, that the character is
still holding the gun), but the character does not need to per-
form the active sensing actions immediately. The character
chooses to construct a plan with their current knowledge on
how they can achieve the goal. The steps that form the plan
may include the active sensing actions. However, it is also
important to note that these steps form a plan to achieve the
character’s goals, and the character already has an optimal
result of the sensing action along with the rest of the steps
of the plan in their head.

Heuristic Implementation

In the algorithm described for HEADSPACE, a heuristic
function is used to select the next action to add to a plan dur-
ing plan construction. We define below a heuristic for deter-
mining the next step, which extends the FastForward heuris-
tic by Hoffman and Nebel (Hoffmann and Nebel 2001), tak-
ing in to account the context in HEADSPACE afforded by



multiple characters each holding distinct beliefs about the
state of the world.

In the FastForward algorithm, search for next steps to add
to a plan is conducted using a relaxed plan graph, a model
of possible action sequences that relaxes many of the con-
straints around plan construction in order to provide an ef-
ficient heuristic estimate of the distance to a plan solution.
The algorithm for computing the relaxed plan graph for the
heuristic calculation is provided in Algorithm 2. There are
two major additions to this process that extend the FastFor-
ward heuristic calculation. While the algorithm constructs
layers similar to the original FastForward algorithm, it stores
the world states and character states separately at each time
step t. This allows for the relaxed plan graph to track not
only the changes in the world state and compare it with the
authorial goals for the world, but also allows for tracking
changes in character beliefs and continuing the plan con-
struction process until the authorial goals for both material
conditions in the world and character beliefs are met (as seen
in line 6). The second addition is that for any action that
can possibly fail, the epistemic update due to attempting to
perform the action (and failing) is also added to the relaxed
plan graph (line 16). In other words, the heuristic allows for
a character to consider the possibile effects of failing as well
as succeeding while performing an action.

This extended relaxed plan graph construction allows for
constructing a graph that extends the world state towards the
authorial goals for the world, and the various character be-
liefs toward the authorial goals for character beliefs simulta-
neously, and also accounts for the possible effects of actions
failing at any point. Once this relaxed plan graph is con-
structed, we calculate the depth of this graph using the orig-
inal FastForward relaxed plan graph depth algorithm. This
heuristic is then provided to the HEADSPACE algorithm to
determine the best action from the possible steps.

Example

To demonstrate the range of belief dynamics and the in-
teraction between belief and execution in HEADSPACE, we
define a simple story domain we call the Drink Refill do-
main. Ground operators for the domain are shown in Ta-
ble 1, although space limitations required that we list only
those ground operators from the domain that are used in the
particular plan we examine.

The Drink Refill domain example makes use of seven op-
erators. They are HOLD, where a character previously hold-
ing nothing holds an object, POUR-DRINK, where a char-
acter holding a bottle can pour a drink from it, CHECK-
BOTTLE-EMPTY, where a character can take a closer look
at the bottle that they are holding in order to determine if
the bottle is empty, PLACE-DOWN, where a character places
an object down, SERVE-DRINK, where a character serves
a filled drink to a customer, OBSERVE-LOCAL+, where a
character observes the location of an object that’s in the same
location as the character, and OBSERVE-HOLDING+, where
a character observes what they are currently holding in their
hand.

As an example, consider a planning problem in this do-
main that involves a bartender refilling a thirsty customer’s

Algorithm 2: Algorithm for enhanced relaxed plan graph
construction for the FastForward Algorithm. As input
we accept the initial state of the world wg, the ini-
tial belief states of the characters Cy = clg,c2p...,cng,
the goal conditions for the world wg,goals for var-
ious characters as defined by the author Cg =
clg,...,cng , a set of ground operators GO, call
ComputeRelaxedPlanGraph(GO, wg, wa, Co, Ca).

ComputeRelaxedPlanGraph(GO, wy, wg, Cy, Cg)
2: Let ! be the Layers to be constructed.

Lett =0
4: .Fy.add(t, wo)

[.Fc.add(t,Cyh)
6: while L.F¢(t) # CgandL.F,,(t) # G do

t=t+l
8: forallo € GO do
if o is apparently executable then

10 [.A.add(t,0)
end if
12:  end for

l.Fy.add(t,l.F,(t — 1))
14:  LFc.add(t,l.Fo(t — 1))
forall oinl.A(t) do
16: Let w’ be the relaxed world state resulting from
attempting and failing to execute action o in world
state w.
Let w” be the relaxed world state resulting from
executing action o successfully in world state w
18: L) =1Lft)uw Uw”
end for
20: end while
return [

drink glass. An informal sketch of the planning problem’s
initial state sets a character, Teddy, to serve as a bartender.
The goal for the story is for the drink to be refilled and served
to the customer. The plan for the story is shown in Figure 1.
In the story plan, Teddy means to hold the bottle that they
believe is filled with the drink, pour a refill, and then serve it
back to the customer. The plan in Figure 1 shows the actual
executed story actions. In world state wg, Teddy believes
that Bottle 1 and Bottle 2 are not empty, the drink needs
to be refilled, and they are not holding anything. His beliefs
at wy are correct except for the fact that Bottle 1 is actually
empty. Teddy first holds Bottle 1, then attempts to pour lig-
uid from it into the glass, thus refilling the drink. However,
because the bottle is empty, the action fails. At this point, he
realizes that the action failed, and becomes uncertain about
just those beliefs that were involved in the failed action’s
preconditions.

Thus, in the resulting state, ws, all of the epistemic
preconditions for Teddy’s execution of Action 2 (the first
POUR-DRINK action) have been asserted as unknown in his
belief model. Teddy then passively senses his own location
(Action 3) and the location of Bottle 1 (Action 4) and the
glass (Action 5). He then passively senses that he’s holding



Hold(T, B1) Serve-Drink(T, G) Pour-Drink(T, B1) Pour-Drink(T, B2)
PRE-F holding(T, B1) PRE-F empty(G) PRE-T holding(T, B1) PRE-T holding(T, B2)
holding(T, B2) served(G) empty(G) empty(G)
PRE-B- holding(T, B1) PRE-B- empty(G) PRE-F empty(B1) PRE-F empty(B2)
holding(T, B2) served(G) PRE-B+ holding(T, B1) PRE-B+ holding(T, B2)
EFF-T holding(T, B1) EFF-T served(G) empty(G) empty(G)
EFF-B+ holding(T, B1) EFF-B+ served(G) PRE-B- empty(B1) PRE-B- empty(B2)
EFF-T empty(B1) EFF-T empty(B2)
Place-Down(T, B1) *QObserve-Local+(T, G, B) EFF-F empty(G) EFF-F empty(G)
PRE-T holding(T, B1) PRE-T at(T, B) EFF-B+ empty(B1) EFF-B+ empty(B2)
PRE-B+ holding(T, B1) at(G, B) EFF-B- empty(G) EFF-B- empty(G)
EFF-F holding(T, B1) PRE-B+ at(T, B)
PRE-B- holding(T, B1 PRE-U at(G, B) Hold(T, B2)
EFF-B+ at(G, B) PRE-F holding(T, B1) Check-Bottle-Empty(T, B1)
*QObserve-Local+(T, B1, B) holding(T, B2) PRE-T holding(T, B1)
PRE-T at(T, B) *Observe-Local+(T, T, B) PRE-B- holding(T, B1) PRE-F empty(B1)
at(B1, B) PRE-T at(T, B) holding(T, B2) PRE-B+ holding(T, B1)
PRE-B+ at(T, B) PRE-U at(T, B) EFF-T holding(T, B2) PRE-U empty(B1)
PRE-U at(B1, B) EFF-B+ at(T, B) EFF-B+ holding(T, B2) EFF-B- empty(B1)
EFF-B+ at(B1, B)

Table 1: Ground Operators used in the Drink Refill Domain. Here, object constants have been abbreviated to preserve space.
Throughout, we use T for Teddy, B for Bar, B1 for Bottle 1, B2 for Bottle 2, and G for the glass.

Bottle 1 in his hand (Action 6). He then actively seeks new
beliefs about Bottle 1 by checking for liquid in the bottle
(Action 7). As a result of Action 7, Teddy believes in wr
that Bottle 1 is empty. In Action 8 he places Bottle 1 on the
counter, then in Action 9 he picks up Bottle 2. In Action
10, he attempts to pour the drink from Bottle 2. Succeed-
ing this time, the drink is now refilled. Since Teddy believes
correctly in wig that the drink is refilled, he serves the drink
(Action 10).

Analytical Evaluation

In this paper, we propose an approach for narrative plan-
ning that is capable of producing plot-level structures that
are not generated by current narrative planners. Specifically,
HEADSPACE can generate plans that allow for characters’
actions to fail, and those failures can prompt belief revision
as characters seek new ways to achieve their goals.

As a brief characterization of HEADSPACE’s plan genera-
tion process, we provide summary metrics for the Drink Re-
fill domain and specific planning problem described above.
The domain consists of six unique operators. The short-
est solution plan length for the planning problem consists
of seven steps, including failed actions. The search space
explored consisted of 19 nodes, with a maximum branch-
ing factor of 4 and an average branching factor of 2. Run-
ning on an Intel 17-4280K CPU at 3.7GHz with 16GB of
RAM, the time taken for the planning algorithm to gen-
erate the shortest plan was 49 milliseconds. In this paper,
we focus below on an analytical evaluation that character-
izes HEADSPACE based on its expressive range (Smith and
Whitehead 2010).

While there have been narrative planning approaches that
use metrics drawn from conventional planning evaluation
(e.g., minimum plan length and plan cost (Teutenberg and
Porteous 2015)), we argue that such metrics, used alone or
as the over-riding indicator of the strength of an algorithm,
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Figure 1: A solution plan for the Drink Refill domain’s plan-
ning problem. Green actions are successfully performed ac-
tions. Red actions are ones that are attempted but that fail
because their material preconditions are not all met in the
world state where they are attempted.



would be inappropriate. Plot lines and the plan-based struc-
tures that can be used to characterize them are commonly not
optimal or cost efficient, due in part to the limitations of the
characters performing the plot’s actions. HEADSPACE fea-
tures plans that incorporate failed actions, where characters
have incorrect beliefs that might lead them to perform ac-
tions that are not optimal for their goals. This could lead to
narratives which are longer than ones where the least amount
of actions lead to the goal state being achieved. Moreover, in
scenes such as the example from Avengers: Endgame, met-
rics such as plan length and minimum cost would not lead to
such narratives. Hence, while plan efficiency metrics are im-
portant contributors to the design of appropriate story plan
generation methods, there is value in narrative planning ap-
proaches that generate plans with properties that would not
conventionally be considered ideal.

A significant contribution of HEADSPACE is its ability
to produces plans that no other planning approach currently
generates: plans where actions fail because of incorrect be-
liefs and characters subsequently correct those incorrect be-
liefs where possible and carry on in pursuit of their goals.
Our work differs from related efforts in several ways.

Teutenberg and Porteous (Teutenberg and Porteous 2015)
propose an approach which focuses on characters holding
distinct sets of beliefs in order to support deception. In their
work, however, their planner is not capable of producing
plans containing action failure. Similarly, the Glaive plan-
ner (Ware and Young 2014) supports characters holding dis-
tinct sets of beliefs about the world, and Glaive does form
plans where characters pursue sub-plans that, if fully exe-
cuted, would not succeed (due to unanticipated conflict with
other characters’ subplans). However, Glaive plans also con-
tain no failed actions. Plans produced by VST (Ten Brinke,
Linssen, and Theune 2014) contain subplans built using mis-
taken character beliefs. Like Glaive, however, characters in
VST plans always detect their mistaken beliefs prior to at-
tempting actions that would otherwise fail, and so update
their plans to avoid action failure. Much like the plans pro-
duced by HEADSPACE, the plans produced by the method
defined by Christensen, Nelson, and Cardona-Rivera (Chris-
tensen, Nelson, and Cardona-Rivera 2020) contain failed ac-
tions. However, their approach cannot produce plans where
a character’s belief about a proposition changes to ignorance
(as happens in HEADSPACE when an action fails). As a re-
sult, their method cannot produce plans where information-
seeking behavior arises because of action failure and subse-
quent actions take that plan repair into account.

While these other systems address aspects of character
belief and plan/action failure, none of them provide an in-
tegrated model producing narratives that involve characters
that have incorrect beliefs about the world, plan to take ac-
tions that they perceive to be executable, attempt but fail at
those actions, and as a result, become ignorant about con-
ditions in the world related to their failed action’s execu-
tion. Furthermore, while our approach demonstrates this in-
creased expressivity, it also generates narratives where char-
acters do not have distinct sets of beliefs (e.g, where all char-
acters have complete knowledge of the world) and, as a re-
sult, actions do not fail. This is achieved in our approach

by assigning all characters full, correct belief in the initial
state and restricting the syntax of our operators to have iden-
tical epistemic and material preconditions and effects. In
this way, a character would never have incorrect beliefs, and
would never include in their plan an action whose precondi-
tions were not materially satisfied at execution.

Discussion and Future Work

The HEADSPACE planning algorithm provides an initial def-
inition of a knowledge representation and planning algo-
rithm to generate plots containing actions that fail due to
characters’ incorrect beliefs. Analytic evaluation suggests an
increased expressive range compared to other story-planning
systems. However, our current method for updating char-
acters’ belief states after failed actions have several limita-
tions that we are currently addressing. First, when an action
fails, the performing character transfers all preconditions of
the failed action into the unknown partition of their belief
state. A more informed credit assignment algorithm could
do better at picking which preconditions should be called
into question upon failure of an action. Second, characters
other than the ones performing actions do not become aware
of the actions’ success or failure. Third, because precondi-
tions and effects do not make reference to actions, characters
currently do not become aware of actions as they execute
(or are attempted). Finally, we are looking to leverage prior
work by Young (Young 2017) to connect action failure with
the intention.
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